II. Áp dụng

1. Trình tự thiết kế, tính toán tường barret bằng chương trình sheeting check:

Bước 1: Trình đơn Project (dự án) :

- Nhập các dữ liệu về công trình như thông tin dự án, ngày tháng thiết kế, thông tin về tác giả, chủ đầu tư

- Nhập đơn vị chung cho bài toán.

Bước 2: Trình đơn Analysis methods (phương pháp phân tích tường):

- Lựa chọn phương pháp tính toán áp lực đất (theo tiêu chuẩn, lý thuyết Coulomb, lý thuyết Caqouot...), bao gồm áp lực chủ động và áp lực bị động của đất.

 - Lựa chọn phương pháp tính toán ảnh hưởng của động đất (lý thuyết Mononobe – Okabe, lý thuyết Arango)

- Nhập số lượng phần tử hữu hạn trong tính toán khi phân tích tường

Bước 3: Trình đơn Profile:

- Nhập cao độ mặt đất (Terrain elevation)

- Nhập thông số về các lớp đất (độ sâu của các lớp đất).

Bước 4: Trình đơn Modulus K_h :

- Nhập giá trị cho mođun phản lực của đất nền (theo Schmith, phân bố...)

- Mô đun phản lực theo phương ngang của đất nền một cách tổng quát phù hợp với độ cứng lò xo trong mẫu Winkler mô tả mối quan hệ giữa tải trọng tác dụng lên một bản đặc và biến dạng tổng của đất được tính như sau:

p = k.y

Trong đó: p - Tải trọng tác dụng dọc theo bề mặt của bản đất

k - Độ cứng của lò xo Winkler

y - Chuyển vị của tấm vào trong đất nền.

- Trong chương trình, chúng ta có thể khai báo mô đun phản lực đất nền dưới các dạng như sau:

+ Dạng phân bố: giả thiết phân bố của mô đun phản lực của đất phía trước và phía sau công trình được nhập

+ Là một thông số của đất với giá trị tương ứng theo các công thức của Schmitt, CUR166, Menard, Chadeisson, phép lặp sủ dụng các thuộc tính biến dạng của đất).

Bước 5: Trình đơn Soils:

- Lựa chọn mẫu mặt cắt cho lớp đất.

- Nhập các thông số cần thiết cho các lớp đất.

Bước 6: Trình đơn Geometry:

- Nhập các thông số cho tường vây: vật liệu, độ dày, chiều cao...

Những bước khai báo trên là không đổi trong suốt các giai đoạn thi công. Sau khi thi công tường chắn trong đất, khi chưa tiến hành đào, chương trình coi nội lực và chuyển vị trong tường là bằng 0.

Các bước tiếp theo được khai báo trong từng giai đoạn thi công:

Bước 7: Trình đơn Assign:

- Khai báo các thông số đã nhập trong bước 5 cho từng lớp đất.

Bước 8: Trình đơn Excavation (đào đất):

- Lựa chọn mô hình đào đất dưới hố đào

- Khai báo độ sâu đào đất (depth of ditch)

- Khai báo hoạt tải trong hố đào (nếu có)

- Lớp nền hố đào (nếu có)

Bước 9: Trình đơn Terrain:

- Khai báo mô hình đất ngoài hố đào

Bước 10: Trình đơn Water:

Khai báo các thông số về nước

Bước 11: Trình đơn Surcharge:

- Nhập hoạt tải trên mặt đất

Bước 12: Trình đơn Applied force:

- Nhập các ngoại lực tác dụng lên tường(lực xô ngang, mômen uốn) Bước 13: Trình đơn Anchors:

- Khai báo các thông số về neo trong đất

Bước 14: Trình đơn Props:

- Khai báo các thông số về thanh chống

Bước 15: Trình đơn Supports:

Khai báo các thông số về gối tựa của tường

Bước 16: Trình đơn Earthquake:

- Lựa chọn có tính toán ảnh hưởng của động đất tới công trình hay không

- Nhập các hệ số động đất theo phương ngang và phương đứng

- Lựa chọn có kể đến ảnh hưởng của nước hay không

Bước 17: Trình đơn Settings:

- Lựa chọn tiêu chuẩn để tính toán

 - Lựa chọn những hệ số khác trong tính toán như hệ số an toàn trong tính toán ổn định....

Bước 18: Trình đơn Analysis

- Ấn vào trình đơn analysis để phân tích tường trong giai đoạn thi công thứ nhất.

- Chương trình sẽ tiến hành phân tích hệ kết cấu tường, đất và kết cấu chống giữ. Kết quả thu được là nội lực của tường, chuyển vị của tường và áp lực đất tác dụng lên tường

Bước 19: Trình đơn Internal Stability

- Kiểm tra ổn định bên trong tường chắn

Bước 20: Trình đơn External Stability

- Kiểm tra ổn định tổng thể tường chắn

Sau khi tiến hành kiểm tra phân tích tường chắn trong giai đoạn thi công thứ nhất, ta chuyển sang giai đoạn thi công thứ hai. Các bước khai báo trong giai đoạn này tương tự giai đoạn thứ nhất.

Sau khi phân tích xong tất cả các giai đoạn thi công tiến hành in các thuyết minh và các biểu đồ nội lực, chuyển vị:

- Sử dụng trình đơn Add picture để đưa hình ảnh vào thuyết minh

- Quay về bước thi công thứ nhất (Stage of construction), lựa chọn trình đơn Envelopes, lựa chọn biểu đồ bao nội lực, biểu đồ bao chuyển vị.

- In thuyết minh (file/ Print document). Thuyết minh được Geo5 đưa ra chỉ bao gồm các giai đoạn tính toán đã được thực hiện. Trong trường hợp ta không cho chương trình dựng biểu đồ bao, trong thuyết minh sẽ không có phần tính toán cũng nhưng số liệu về biểu đồ bao.

2. Thống kê các số liệu đầu vào cần có cho bài toán thiết kế tường bằng phần mềm Geo5:

2.1. Các số liệu về địa chất :

- Số liệu về địa tầng, chiều sâu, cao độ các lớp đất. Các số liệu này có thể tìm thấy dễ dàng trong các tài liệu khảo sát địa chất của công trình.

- Các thông số về đất được sử dụng để khai báo trong trình đơn Soils (bước thứ 5)

+Trường hợp tính toán theo ứng suất hữu hiệu:

ST	Chỉ tiêu	Ký hiệu (Geo5)	Đơn vị	Ghi chú
1.	Dung trọng tự nhiên	γ	kN/m ³	Thường có trong các báo cáo địa chất của công trình
2.	Lực dính kết	C _{ef}	kN/m ³	
3.	Góc nội ma sát	φef	độ	

Bảng 1: Các thông số về đất cần khai báo trong chương trình sheeting check

4.	Mô đun biến dạng	E _{def}	Мра	
5.	Góc ma sát giữa đất và tường	δ_{act} , δ_{pas}	độ	Tham khảo trong bảng
6.	Hệ số Poisson	ν		- Có thể xác định gần đúng qua công thức: $v = \frac{K_0}{K_0 + 1}$; $K_0 = 1 - \sin \varphi$
7.	Dung trọng bão hoà	γsat	kN/m ³	
8.	Dung trọng của đất	γs	kN/m ³	
9.	Độ rỗng của đất	n		

Bảng 2: Bảng tra các số liệu về góc ma sát giữa đất và tường

Hệ số tỉ lệ giữa $|\delta| / \varphi$

Vật Liệu tường	Bê t	ông	Tł	nép	G	Sõ
Đất	Nhẵn	Nhám	Nhẵn	Nhám	Nhẵn	Nhám
Đất không dính,xốp	0.85	0.9	0.7	0.8	0.75	0.80
Đất không dính,chặt	0.80	0.8	0.6	0.7	0.7	0.7
Đất không dính, đặc	0.7	0.7	0.5	0.7	0.65	0.65
Bùn	0.8	0.9	0.6	0.8	0.8	0.9
Đất pha sét	0.8	0.9	0.5	0.7	0.7	0.8
Sét	0.8	0.9	0.5	0.6	0.6	0.7

2.2. Các thông số về tường chắn :

Nhập các thông số về tường vây để chương trình tiến hành phân tích, tính toán nội lực và chuyển vị. Trong việc thiết kế tường chắn, chúng ta cần tiến hành một bài toán lặp. Chúng ta lựa chọn trước chiều sâu, tiết diện của tường vây rồi phân tích nội lực cũng như chuyển vị của tường. Từ đó lựa chọn được tiết diện và chiều sâu hợp lý nhất của tường.

Các thông số cần thiết cho tường:

- Chiều dài của tường chắn (section length) L(m) (thông thường lựa chọn tường sâu hơn đáy hố đào (0.7-1).H Với H là chiều sâu hố đào.

- Chiều dày của tường (Web thickness). Chiều dày của tường thường lựa chọn 500, 600, 800, 1000, 1200...

 Vật liệu làm tường (bê tông hoặc thép) với các đặc trưng vật liệu như mô đun biến dạng E; môđun chống cắt G

New anchor		X
Anchor parameters	2	Travit Calicon
Depth :	z = 0.00	[m]
Free length :	=	[m] b
Length of root :	l _k =	[m]
Slope :	α =	0.00 [°]
Anchor spacing :	b =	1.00 [m]
Stiffness of anchor		
Oiameter:	d =	[mm]
C Area :		
Modulus of elasticity :	E = 21000	00.00 [MPa]
Prestress force :	F = (0.00 [kN]
		. Add ∑ Cancel

2.3. Thông số về neo trong đất:

Hình 2.1. Hộp thoại về neo trong đất

Các thông số về neo được chỉ rất rõ trong chương trình. Các số liệu cần thiết về neo trong đất như : chiều sâu đặt neo, chiều dài neo, chiều dài lớp bê tông neo, góc nghiêng của neo, khoảng cách giữa các neo, đường kính của neo(hoặc diện tích); môdun đàn hồi và lực nén trước trong neo.

2.4. Thông số về thanh chống tường chắn:

- Các thông số về thanh chống cần có: Vị trí của thanh chống, chiều dài thanh chống, khoảng cách thanh chống, môđun đàn hồi, diện tích tiết diện của thanh chống.

 Hiện nay, ở Việt Nam thường sử dụng chủ yếu 3 biện pháp sau để chống đỡ tường vây: sử dụng hệ dàn chống, sử dụng hệ thanh chống và biện pháp thi công topdown (dùng hệ dầm sàn bê tông cốt thép như một hệ chống đỡ tường).

+ Đối với trường hợp sử dụng hệ thống chống đỡ bằng thanh chống, việc xác định các thông số của thanh chống như khoảng cách thanh chống, mô đun đàn hôi, diện tích tiết diện là đơn giản.

+ Đối với trường hợp sử dụng hệ thống văng chống bằng dàn hay bằng sàn topdown, ta coi hệ sàn như một hệ thống các thanh chống tương đương, có khoảng cách là 1 đơn vị chiều dài. Để xác định diện tích tiết diện và môđun đàn hồi của thanh chống tương đương, ta cần xác định độ cứng tổng thể của toàn bộ hệ chống đỡ, rồi phân chia theo từng đơn vị độ dài. Tuy nhiên, phương pháp trên là khá phức tạp. Một cách gần đúng, ta có thể coi hệ sàn (dàn) chống như một hệ thanh chống tương đương, có khoảng cách, cũng như bề rộng tiết diện là 1 đơn vị chiều dài. Khi đó, tiết diện thanh chống tương đương cũng như môdun đàn hồi có thể xác định dễ dàng giống như một thanh chống thường.

Geometry		-	
Prop depth :	z = 3.	00	[m]
Length :	I = [5	.00 [m]
5pacing of props :	b = 🗌	1	.00 [m]
5tiffness			_
Modulus of elasticity :	E =	32500	.00 [MPa]
Area :	A =	1.500E+	-05 [mm ²]

Hình 2.2.Hộp thoại khai báo thanh chống

2.5. Thông số về gối tựa:

New support			
Geometry	1.1		
Support depth :	z =		[m]
Support spacing :	b = [1.00	[m]
Displacement			
Type of displacement :	Fixe	ed	•
Forced displacement :	Γ	0.0	[mm]
Rotation	2		
Type of rotation :	Fre	e	-
	Fixe	ed	
	Fre	8	
	For	ced displ.	
		Add	× <u>C</u> ancel

Hình 2.3.Hộp thoại khai báo gối tựa

Các số liệu cần thiết về gối tựa được chương trình đưa ra khá tường minh.
 Ngoài các số liệu về độ sâu đặt gối tựa, khoảng cách gối; ta cần đưa ra những thông tin về chuyển vị và góc xoay của gối tựa.

3. Áp dụng module sheeting check cho một công trình cụ thể.

3.1. Giới thiệu về bài toán:

Toà nhà văn phòng Tuấn Đức bao gồm 14 tầng, 3 tầng hầm. Mỗi tầng hầm cao 3,0m (tính từ cốt ± 0.000).

Phần tường xung quanh sử dụng hệ tường vây có bề rộng 0,8m; sâu 18m. Điều kiện địa chất của công trình như sau:

Lớp 1: Lớp đất đắp, dày 1,7m. Chỉ tiêu cơ lý của lớp đất được giả thiết đưa vào tính toán như sau : γ = 18,9 kN/m³ ; φ = 11° độ, c = 0 kPa, E₁₋₂ = 7,5 MPa

Lớp 2: Lớp đất đắp, dày 5,5m. Chỉ tiêu cơ lý của lớp đất được vào tính toán như sau : γ = 17,1 kN/m³ ; φ = 6,8° độ, c = 13,3 kPa, E₁₋₂ = 3,0 MPa

Lớp 3: Lớp đất đắp, dày 5,5m. Chỉ tiêu cơ lý của lớp đất được vào tính toán như sau : γ = 13,0 kN/m³ ; φ = 5° độ, c = 9,2 kPa, E₁₋₂ = 2,0 MPa

Lớp 4: Lớp đất đắp, dày 5,5m. Chỉ tiêu cơ lý của lớp đất được vào tính toán như sau : γ = 15,4 kN/m³ ; φ = 6,5° độ, c = 11,4 kPa, E₁₋₂ = 2,8 MPa

Lớp 5: Lớp đất đắp, dày 5,5m. Chỉ tiêu cơ lý của lớp đất được vào tính toán như sau : γ = 19,1 kN/m³ ; φ = 13,8° độ, c = 21,0 kPa, E₁₋₂ = 13,5 MPa

Lớp 6: Lớp đất đắp, dày 5,5m. Chỉ tiêu cơ lý của lớp đất được vào tính toán như sau : γ = 15,1 kN/m³ ; φ = 33,3° độ, c = 0,0 kPa, E₁₋₂ = 18,0 MPa

Lớp 7: Lớp đất đắp, dày 5,5m. Chỉ tiêu cơ lý của lớp đất được vào tính toán như sau : γ = 15,6 kN/m³ ; ϕ = 37,5° độ, c = 0,0 kPa, E₁₋₂ = 24,0 MPa

Các bước thi công của nhà thầu được tiến hành như sau:

1. Bước 1: Nhà thầu tiến hành đào đất từ cốt -1,200m đến cốt -3,200 (sai số 0,2-0,5m) với chiều dài từ trục 1- trục 6. Đào đất đến đâu sẽ được vận chuyển hết ra khỏi công trường bằng ô tô chuyên dụng có phủ bạt chắn đất.

2. Bước 2: Để thuận tiện cho việc giao thông của máy đào và phương tiện vận chuyển đất ra khỏi công trường cũng như việc vận chuyển vật liệu vào công trường, nhà thầu tạo đường taluy mái dốc tại vị trí phân đoạn 7.

3. Bước 3: Sau khi đào xong phần lớp đất đến cốt -3,200m (sai số 0,2m-0,5m) nhà thầu sẽ tiến hành lắp dựng hệ văng chống trong phân đoạn 1 tại cốt ---2,300m.

4. Bước 4: Khi hệ văng chống phân đoạn 1 được lắp dựng xong, nhà thầu sẽ tiến hành đào đất phân đoạn 1 từ cốt -3,200m đến cốt -6,150m

5. Bước 5: Nhà thầu tiến hành thi công lắp dựng hệ văng chống ở giai đoạn 2

6. Bước 6: Trình tự thi công đào đất và lắp dựng hệ văng chống ở giai đoạn 2 tương tự giai đoạn 1.

3.2. Kiếm tra khả năng làm việc của tường trong các giai đoạn thi công trên:

Sử dụng phần mềm GEO5 tiến hành kiểm tra khả năng làm việc của tường. Bước 1: Trình đơn Project (dự án) : - Nhập các dữ liệu về công trình như thông tin dự án, ngày tháng thiết kế, thông tin về tác giả, chủ đầu tư

- Nhập đơn vị chung cho bài toán.

sk : Demotre ben elsestel comploxement	Part:	Kern tra bien phap thi cong	_
soipt, (Tinh tean nei luc buong vay	Oustomer (TumDuc Cap.	_
that : ATDK	💌 Data :	10/17/2009 -	
stern of units			
etric 💌			

Hình 3.1. Khai báo các thông tin về dự án

Bước 2: Trình đơn Analysis methods (phương pháp phân tích tường):

- Lựa chọn phương pháp tính toán áp lực: Standard

 - Lựa chọn phương pháp tính toán ảnh hưởng của động đất: lý thuyết Mononobe – Okabe

- Nhập số lượng phần tử hữu hạn trong tính toán khi phân tích tường :20

N 730037)	essure calculation :
el (CSN 730037)	pressure calculation :
	alysis
kabe 💌	/: M
	ting
20 [-]	to discretize wall:
20 [-]	ting to discretize wall:

Hình 3.2. Khai báo các tiêu chuẩn, công thức tính toán hệ kết cấu tường vây Bước 3: Trình đơn Profile:

- Nhập cao độ mặt đất (Terrain elevation) : 0

- Click chuột trái vào nút Add và cửa sổ New interface xuất hiện. Tại mục Coordinates, nhập các giá trị độ sâu của lớp đất và ấn Add.

- Làm tương tự với các lớp đất tiếp theo.

Hình 3.3. Khai báo mặt cắt địa chất

Bước 4: Trình đơn Modulus K_h :

- Nhập giá trị cho mođun phản lực của đất nền: theo Schmith

Piodalas Kit	
Modulus of subsoil reaction K _k :	analyze - Schmitt
· · · · · · · · · · · · · · · · · · ·	

Hình 3.4. Khai báo phương pháp tính toán mô đun phản lực nền

Bước 5: Trình đơn Soils:

- Trong cửa sổ Soils, click chuột trái vào nút Add và cửa sổ Add new Soils xuất hiện.

- Click vào mục Pattern colour để chọn mẫu mắt cắt cho lớp đất và click OK để quay trở về cửa sổ Add new soils.

- Điền các thông số của lớp đất vào các vị trí tương ứng.

- Click nút Add để thêm lớp đất.

- Làm tương tự với các lớp đất còn lại.

Add new Bodig: $\gamma = 1.03$ (MoR) Starting: $\gamma = 1.0^{\circ}$ Starting: $q = 1.0^{\circ}$ $q = 0.0^{\circ}$ Starting: $q = 1.0^{\circ}$ $q = 0.0^{\circ}$ Starting: $q = 1.0^{\circ}$ $q = 0.0^{\circ}$ $q = 0.0^{\circ}$ Starting: $q = 0.45^{\circ}$ $q = 0.45^{\circ}$ $q = 0.0^{\circ}$ Poisson's ratio : $p = 0.45^{\circ}$ $q = 0.45^{\circ}$	00	Solname			Soil characteristics			
Add new soils Identification Name : Defider Basic data $P = 18.90$ [kV/m ³] Stress-state : effective Angle of internal friction : $Wef = 111.00$ [°] Cohesion of soil : $C_{ef} = 18.20$ [kPa] Active friction angle : $\delta_{pax} = 5.00$ [°] Passive friction angle : $\delta_{pax} = 5.00$ [°] Pressure at rest $P = 0.45$ [-] Soil : cohesive Poisson's ratio : $r = 0.45$ [-] Calc. mode of uplift : standard Saturated unit weight : $\gamma_{sat} = 18.90$ [kV/m ³] Analysis of modulus of subsoil reaction $P = 0.45$ [-] Poisson's ratio : $r = 0.45$ [-] Settlement analysis : insert Edef Deformation modulus : $E_{def} = 7.50$ [MPa]	▶ 1 2 3 4 5 5 7	Dat dep Lop 2 Lop 3 Lop 4 Lop 5 Lop 7	Det dep Unit weight : Stress-state I Angle of infermal friction : Cohesion of sol I Active friction angle I Passive friction angle I Sol I Passive friction reduce I Passive friction reduce I Passive friction reduce I Passive friction reduce I Sol I Passive friction reduce I Passive frict	$\begin{array}{rcl} \gamma &=& 18.90 \text{MeV} \\ \text{effective} \\ q_{ef} &=& 11.00 \ ^{\circ} \\ C_{ef} &=& 19.30 \text{MeV} \\ \delta_{eff} &=& 5.00 \ ^{\circ} \\ \delta_{pele} &=& 5.00 \ ^{\circ} \\ \text{consistent} \\ \eta &=& 0.45 \\ E_{eff} &=& 7.60 \text{MeV} \\ \eta &=& 0.45 \\ T_{tot} &=& 18.90 \text{MeV} \end{array}$	3			gat Gat
IdentificationDrawName :Dat dapBasic data Υ = $\begin{bmatrix} 18.90 \\ KN/m^3 \end{bmatrix}$ Unit weight : $\gamma = \begin{bmatrix} 18.90 \\ Fersore \\ Angle of internal friction :Angle of internal friction :\psi_{ef} = \begin{bmatrix} 11.00 \\ C^9 \end{bmatrix}Cohesion of soil :c_{ef} = \begin{bmatrix} 18.20 \\ KPa \end{bmatrix}Active friction angle :\delta_{act} = \begin{bmatrix} 5.00 \\ C^9 \end{bmatrix}Passive friction angle :\delta_{act} = \begin{bmatrix} 5.00 \\ C^9 \end{bmatrix}Pressure at rest\ImSoil :cohesivePoisson's ratio :\nu = \begin{bmatrix} 0.45 \\ -1 \end{bmatrix}Uplift pressure\ImCalc. mode of uplift :standardSaturated unit weight :\gamma_{sat} = \begin{bmatrix} 18.90 \\ KN/m^3 \end{bmatrix}Analysis of modulus of subsoil reaction\squarePoisson's ratio :\nu = \begin{bmatrix} 0.45 \\ -1 \end{bmatrix}Deformation modulus :E_{def} = \begin{bmatrix} 7.50 \\ MPa \end{bmatrix}$		Add new soils						
Name :Pattern and colourBasic data(P)Unit weight : $\gamma = \begin{bmatrix} 18.90 \\ \text{KN/m^3} \end{bmatrix}$ Stress-state :effectiveAngle of internal friction : $\psi_{ef} = \begin{bmatrix} 11.00 \\ 0 \end{bmatrix}$ Cohesion of soil : $c_{ef} = \begin{bmatrix} 18.20 \\ \text{KPa} \end{bmatrix}$ Active friction angle : $\delta_{act} = \begin{bmatrix} 5.00 \\ 0 \end{bmatrix}$ Passive friction angle : $\delta_{pas} = \begin{bmatrix} 5.00 \\ 0 \end{bmatrix}$ Pressure at rest(P)Soil :cohesivePoisson's ratio : $v = \begin{bmatrix} 0.45 \\ -1 \end{bmatrix}$ Uplift pressure(P)Calc. mode of uplift :standardSaturated unit weight : $\gamma_{sat} = \begin{bmatrix} 18.90 \\ \text{KN/m^3} \end{bmatrix}$ Analysis of modulus of subsoil reaction(P)Poisson's ratio : $v = \begin{bmatrix} 0.45 \\ -1 \end{bmatrix}$ Deformation modulus : $E_{def} = \begin{bmatrix} 7.50 \\ \text{MPa} \end{bmatrix}$		- Identification					Draw	
Basic data Unit weight : $\gamma = 18.90 \text{ [kN/m^3]}$ Stress-state : effective Angle of internal friction : $\psi_{\text{eff}} = 11.00 \text{ [°]}$ Cohesion of soil : $c_{\text{eff}} = 18.20 \text{ [kPa]}$ Active friction angle : $\delta_{\text{pac}} = 5.00 \text{ [°]}$ Passive friction angle : $\delta_{\text{pac}} = 5.00 \text{ [°]}$ Pressure at rest Soil : cohesive Poisson's ratio : $\nu = 0.45 \text{ [-]}$ Uplift pressure Calc. mode of uplift : standard Saturated unit weight : $\gamma_{\text{sat}} = 18.90 \text{ [kN/m^3]}$ Analysis of modulus of subsoil reaction Poisson's ratio : $\nu = 0.45 \text{ [-]}$ Settlement analysis : insert Edef Deformation modulus : $E_{\text{deff}} = 7.50 \text{ [MPa]}$		Name :	at dap				Pattern	
Basic dataPIterationDesktopUnit weight : $\gamma = 18.90$ [kN/m³]IterationPerformantial frictionStress-state :effectiveIterationAngle of internal friction : $p_{ef} = 11.00$ [°]IterationCohesion of soil : $c_{ef} = 18.20$ [kPa]IterationActive friction angle : $\delta_{act} = 5.00$ [°]PicturesPassive friction angle : $\delta_{pas} = 5.00$ [°]PicturesPoisson's ratio : $v = 0.45$ [-]IterationUplift pressure[?]IterationCalc. mode of uplift :standard[?]Saturated unit weight : $\gamma_{sat} = 18.90$ [kN/m³]ClassificationPoisson's ratio : $v = 0.45$ [-]IterationSettlement analysis :insert EdefIterationDeformation modulus : $E_{def} = 7.50$ [MPa]Iteration								
Unit weight : $\gamma = 18.90 \text{ [kN/m^3]}$ Stress-state : effective Angle of internal friction : $p_{ef} = 11.00 \text{ [°]}$ Cohesion of soil : $c_{ef} = 18.20 \text{ [kPa]}$ Active friction angle : $\delta_{act} = 5.00 \text{ [°]}$ Passive friction angle : $\delta_{pas} = 5.00 \text{ [°]}$ Pressure at rest Soil : cohesive Poisson's ratio : $r = 0.45 \text{ [-]}$ Uplift pressure Calc. mode of uplift : standard Saturated unit weight : $\gamma_{sat} = 18.90 \text{ [kN/m^3]}$ Analysis of modulus of subsoil reaction Poisson's ratio : $r = 0.45 \text{ [-]}$ Settlement analysis : insert Edef Deformation modulus : $E_{def} = 7.50 \text{ [MPa]}$		- Basic data				2	Desktop	
Stress-state :effectiveAngle of internal friction : $\psi_{ef} = 11.00$ [°]Cohesion of soil : $c_{ef} = 18.20$ [kPa]Active friction angle : $\delta_{act} = 5.00$ [°]Passive friction angle : $\delta_{pas} = 5.00$ [°]Pressure at rest?Soil :cohesivePoisson's ratio : $\nu = 0.45$ [-]Uplift pressure?Calc. mode of uplift :standardSaturated unit weight : $\gamma_{sat} = 18.90$ [kN/m³]CalcsificationPoisson's ratio : $\nu = 0.45$ [-]Saturated unit weight : $\gamma_{sat} = 18.90$ [kN/m³]ClassifyDeleteDeformation modulus : $\nu = 0.45$ [-]Settlement analysis :insert EdefDeformation modulus : $E_{def} = 7.50$ [MPa]		Unit weight :	$\gamma =$	18.90	[kN/m ³]			
Angle of internal friction : $p_{ef} =$ 11.00[°]Cohesion of soil : $c_{ef} =$ 18.20[kPa]Active friction angle : $\delta_{act} =$ 5.00[°]Passive friction angle : $\delta_{pas} =$ 5.00[°]Pressure at rest??Soil :cohesive?Poisson's ratio : $\nu =$ 0.45[-]Uplift pressure??Calc, mode of uplift :standard?Saturated unit weight : $\gamma_{sat} =$ 18.90[kN/m³]Poisson's ratio : $\nu =$ 0.45[-]Poisson's ratio : $\nu =$ 0.45[-]Saturated unit weight : $\gamma_{sat} =$ 18.90[kN/m³]Calc, mode of subsoil reaction?ClassificationPoisson's ratio : $\nu =$ 0.45[-]Settlement analysis :insert Edef?Deformation modulus : $E_{def} =$ 7.50[MPa]?Caread		Stress-state :		effective	<u> </u>			
Cohesion of soil : $c_{ef} =$ 18.20 [kPa]Active friction angle : $\delta_{act} =$ 5.00 [°]Passive friction angle : $\delta_{pas} =$ 5.00 [°]Pressure at rest?Soil :cohesive \checkmark Poisson's ratio : $v =$ O.45 [-]		Angle of internal friction	on: φ _{ef} =	11.00	[°]			
Active friction angle : $\delta_{act} =$ 5.00 [°]PicturesPassive friction angle : $\delta_{pas} =$ 5.00 [°]PicturesPressure at rest??Soil :cohesive?Poisson's ratio : $\nu =$ 0.45 [-]?Uplift pressure??Calc. mode of uplift :standard?Saturated unit weight : $\gamma_{sat} =$ 18.90 [kN/m ³]ClassificationPoisson's ratio : $\nu =$ 0.45 [-]DeleteSettlement analysis :insert Edef? Add		Cohesion of soil :	c _{ef} =	18.20	[kPa]			
Passive friction angle : $\delta_{pas} =$ 5.00 [°]PicturesPressure at rest?Soil :cohesivePoisson's ratio : $\nu =$ 0.45 [-]Uplift pressureCalc. mode of uplift :Saturated unit weight : $\gamma_{sat} =$ 18.90 [kN/m³]ClassificationPoisson's ratio : $\nu =$ 0.45 [-]DeleteSaturated unit weight : $\nu =$ 0.45 [-]Settlement analysis :insert EdefDeformation modulus :Edef7.50 [MPa]		Active friction angle :	$\delta_{act} =$	5.00	[°]			
Pressure at rest \bigcirc Soil :cohesivePoisson's ratio : $\nu = 0.45$ [-]Uplift pressure \bigcirc Calc. mode of uplift :standardSaturated unit weight : $\gamma_{sat} = 18.90$ [kN/m³]Analysis of modulus of subsoil reaction \bigcirc Poisson's ratio : $\nu = 0.45$ [-]Delete \bigcirc Settlement analysis :insert EdefDeformation modulus : $E_{def} = 7.50$ [MPa]		Passive friction angle	: δ _{pas} =	5.00	[°]		Pictures	
Soil : $cohesive$ Poisson's ratio : $v = 0.45$ [-]Uplift pressure $v = 0.45$ [-]Calc. mode of uplift :standardSaturated unit weight : $\gamma_{sat} = 18.90$ [kN/m³]Analysis of modulus of subsoil reaction $v = 0.45$ [-]Poisson's ratio : $v = 0.45$ [-]Settlement analysis :insert EdefDeformation modulus : $E_{def} = 7.50$ [MPa]		-Pressure at rest				2		
Poisson's ratio : $v = 0.45$ [-]Uplift pressure \bigcirc Calc. mode of uplift :standardSaturated unit weight : $\gamma_{sat} = 18.90$ [kN/m ³]Analysis of modulus of subsoil reaction \bigcirc Poisson's ratio : $v = 0.45$ [-]Settlement analysis :insert EdefDeformation modulus : $E_{def} = 7.50$ [MPa]		Soil :		cohesive	-			
Uplift pressure Image: Calc. mode of uplift : standard Image: Calc. mode of uplift : standard Image: Calc. mode of uplift :		Poisson's ratio :	v =	0.45	[-]			
Calc. mode of uplift : standard Saturated unit weight : $\gamma_{sat} =$ 18.90 [kN/m³] Analysis of modulus of subsoil reaction Classification Poisson's ratio : $v =$ 0.45 [-] Settlement analysis : insert Edef Image: Add Deformation modulus : $E_{def} =$ 7.50 [MPa]		- Uplift pressure						
Saturated unit weight : $\gamma_{sat} =$ 18.90 [kN/m ³] Analysis of modulus of subsoil reaction Classification Poisson's ratio : $v =$ 0.45 [-] Settlement analysis : insert Edef Image: Add Deformation modulus : $E_{def} =$ 7.50 [MPa] Image: Classification		Calc. mode of uplift :		standard	-			
Analysis of modulus of subsoil reaction Image: Classification Poisson's ratio : $v = 0.45$ [-] Settlement analysis : insert Edef Deformation modulus : $E_{def} = 7.50$ [MPa]		Saturated unit weight	: $\gamma_{sat} =$	18.90	[kN/m ³]			
Analysis of modulus of subsoil reaction Image: Classify							Classification	
Poisson's ratio : $v = 0.45$ [-] Delete Settlement analysis : insert Edef Image: Add Deformation modulus : Edef = 7.50 [MPa] Image: Consel		- Analysis of modulus of	of subsoil reaction	1 			Classify	
Settlement analysis : insert Edef Deformation modulus : Edef = 7.50 [MPa]		Poisson's ratio :	v =	0.45	[-]		Delete	
Deformation modulus : Edef = 7.50 [MPa]		Settlement analysis :		insert Edef	•		💌 Add	
		Deformation modulus	: E _{def} =	7.50	[MPa]			

Hình 3.5. Khai báo các thông số về đất

Soil and rock s	symbols							
Soil symbols	1		1					Desktop
				بارد				
Silt	Sandy silt	Gravelly silt	Clay	Sandy clay	Gravelly clay	Fine-grained landing	Coarse-grained landing	
				· / · / · · · / · · /				
Sand	Silty sand	Clayey sand	Gravel	Silty gravel	Clayey gravel	Made-up ground	Peat	
Rock symbols	1	1		1				Pictures
	~~~~		***	室室			* * *	
Breccia	Phillite	Gabro	Granulite	Claystone	Siltstone	Sandstone	Mica schist	
Trachyte	Tuff	Limestone	Granite	Discontinuity fillings	Ultrabasic rocks	Rigid body	Other rock	
Other symbols								
								🖉 ОК
								Cancel

Hình 3.6. Mặt cắt điển hình của một số lớp đất

Bước 6: Trình đơn Geometry:

- Trong cửa sổ Geometry, chọn nút Edit, và cửa sổ Edit Section xuất hiện.

- Nhập các thông số cho tường vây:

+ Loại tường vây : Tường tiết diện chữ nhật bằng bê tông cốt thép

+ Section Length: chiều sâu của tường : 18m

+ Hệ số giảm áp lực về phía đáy tường : 1,00

+ Bề dày của tường Web thickness: 0,8m

+ Tiêu chuẩn về vật liệu của tường : CSN 73 1201 R ( tiêu chuẩn có vật liệu bê tông phù hợp với tiêu chuẩn TCVNXD 356-2005)

+ Ấn vào nút Catalog để chọn cấp độ bền của bê tông làm tường. Lựa chọn B30 rồi Click OK để xác nhận.

A 0 0	Section length	Gross-section	Operation of	Mater	ы	and the second	- aile
Sect. #	l[n]		$A[n^2(n)]$	1[n4n]	E [MP3]	6 [MPa]	DKI Binn
1.1	18.00	Reinforced concrete rectangular wall	8.000E-01	4.267E-02	32500.00	13650.00	🖬 (nixet
							Edt
							Ebrow
5						- 1	

Edit section			×
Type of wall :	Reinforced concrete r	ectangular wall	•
Section length :	1=	18.00	[m]
Coeff. of pressure red	duc. below ditch bottor	n 1.00	[-]
Web thickness :	h =	.80	[m]
Standard for concete	structures : CSN	73 1201 R	•
Concrete Catalog Name : <b>B 30</b>	Own		
Information A = 8.000E-01 E = 32500.00	l [m²/m] I = ) [MPa] G =	4.267E-02 [m ⁴ , 13650.00 [MP;	/m] a]
Inter's catalog			Cancel

Hình 3.7. Khai báo các thông số về tường

Catalogue of mater	rials	
Material type		
B 12.5 B 15 B 20 B 25 B 30 B 35		THE REPORT
B 40 B 45 B 50		
Material type: B 30 Standard: CSN 73 1:	201	
Information	🗸 ок	X Cancel

Hình 3.8. Khai báo vật liệu thiết kế tường

*) Ta bước vào giai đoạn thi công thứ nhất: Thi công đào đất đến cốt -3,200m.

Bước 7: Trình đơn Assign:

- Trong cửa sổ Assign, click chuột vào phím mũi tên và lần lượt chọn các lớp đất tương ứng.

sals:	88 P	77 55 777 777 Fill Bill Bill	
影日乐	1		
Na.	Thickness	Anigrad tol	
of layer	(n)	1.0109809	
24-1	1.70	Der der	•
2	1.50	Lop 2	•
1	1.90	Lep 3	•
4	马为	Lep 4	*
13	1.40	Lep 5	×
1 . A	10.20	Lep 7	•
3 181		Lop 5	*

Hình 3.9. Khai báo các lớp đất tương ứng với các lớp địa chất

Bước 8: Trình đơn Excavation (đào đất):

- Lựa chọn mô hình đào đất dưới hố đào bằng click trực tiếp vào mô hình đất.
 Trong bài toán này, ta lựa chọn mô hình đầu tiên, hố đào dưới đất là phẳng.

- Khai báo độ sâu đào đất (depth of ditch)

hart of parameters	Depth of ditch :		ь — 2 00		[m]
	Terrain surcharge		f =	0.00	[III] [kPa]
				3070010	[14 0]
	Mounded soil :	(not assigned)			+
·····	Laver thickness :			0.90	[m]

Hình 3.10. Khai báo mô hình lớp đất dưới hố đào

Bước 9: Trình đơn Terrain:

- Khai báo mô hình đất ngoài hố đào bằng cách click trực tiếp vào mô hình



Hình 3.11. Khai báo mô hình lớp đất ngoài hố đào

Bước 10: Trình đơn Water :

- Khai báo các thông số về nước. Mực nước ngầm của công trình nằm rất sâu, không ảnh hưởng đến tường vây. Ta bỏ qua tác dụng của nước ngầm trong bài toán.

Chart of parameters Tensi Depth of	le crack	h _t =	[m]

Hình 3.12. Khai báo các thông số về nước ngầm

Bước 11: Trình đơn Surcharge:

- Nhập hoạt tải trên mặt đất.

Surface			20.00		k8/m ²	
		 _	_	_	and an	C C C C C C C C C C C C C C C C C C C
						E Banove

Hình 3.12. Hộp thoại hoạt tải trên mặt đất ngoài hố đào

- Click chuột vào nút Add trong cửa sổ Surcharge, hộp thoại New Surcharge xuất hiện.

- Lần lượt nhập tên hoạt tải, dạng hoạt tải là hoạt tải trên bề mặt (surface) và giá trị của hoạt tải.

New surcharge		×
Surcharge name		-
Surcharge properties		
Type :	Surface Strip Trapezoidal Point Line	
Surcharge magnitude Magnitude : q =	= 20.00 [kN/m ² ]	
	💽 Add 🛛 🔀 Cand	cel

Hình 3.13. Nhập hoạt tải tác dụng trên mặt đất ngoài hố đào Bước 12: Tiến hành phân tích tường trong giai đoạn thi công thứ nhất: - Click vào trình đơn Analysis:



Hình 3.14. Giá trị mô đun phản lực nền và áp lực đất



Hình 3.15. Giá trị mômen và lực cắt trong tường



### Hình 3.16. Giá trị chuyển vị của tường

Bước 13: Tiến hành kiểm tra ổn định tổng thể của hệ kết cấu trong giai đoạn thi công thứ nhất (kiểm tra bằng các công thức cổ điển) :

- Click vào trình đơn Exter. Stability, hộp thoại Slope Stability xuất hiện.

- Click vào trình đơn Analysis trên hộp thoại Slope Stability, cửa sổ Stability xuất hiện.

- Chọn hình dạng mặt trượt (Slip Surface) : Circular.

- Click vào nút Input để nhập mặt trượt giả định ban đầu. Nhập x = 0, z = 0 và R = 10 .

- Phương pháp phân tích(method): theo Bishop

- Dạng phân tích( Analysis type) : Optimization ( lựa chọn mặt trượt nguy hiểm nhất).

- Click vào analyze tiến hành kiểm tra

- Click OK để quay về cửa sổ Sheeting check, tiếp tục chuyển sang giai đoạn thi công thứ hai.

Circular s	lip surfa	ice 🔀
– Center —		
x =	0.00	[m]
z =	0.00	[m]
– Radius –		
R = 10	R.	[m]
🖉 ОК		Cancel

uning the second second	limiter								
				www.	******	khikk	h	WW	
	1912	12/1	11/1/2	11/1/1/		18/2/2			
		2/0/19	14/1/2/9	11.14		1/2/19/1	14/1/2	1/2/0	
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1111					1111		
			$\frac{1}{\sqrt{1}}$	- <del>1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1</del>					
Ranges Interface: 🔀 Add	I Nodfy	Renovt	Pont: 美头生				1111	1111 (NA)	
Ranges Interfaces IB Add List of interfaces	E Modfy	E Remove	Point : # Si # Current i	H E or Of		1.1.1.1	14 1 1 1 14 1 1 1		
Ranges Interfaces IB Add List of interfaces (b) (a) Interface	E Modiy	E Reneve	Point : HE Sk H Current i X[0]	E E C O	Carol Turki	++++++  - <u>1</u> +1+1	4 4 4 4 4 4 4 4 7 4 4 4 4 7 4		
Ranges Interfaces IE Add List of interfaces 1 Interface I 1 Interface I 1 Interface I	E Modiy	Reneve	Poort = 5 = 1 Current a ×[0] -45.00	e e e e e e e e e e e e e e e e e e e		<del></del>			
Ranges Interfaces IB Add List of interfaces B Interface I 2. Diterface I 2. Diterface 2 3. Diterface 3	E Modiy	Reneve	Poor = 54 40 Current a ×[0] -0.80 -0.80	2 (n) -2.00 -2.00 -2.00	Cool Parts Parts Parts Parts Parts		1. 1. 1. 1. 1. 1. 1. 1.	<u>(777)</u> (777)	
Ranges Interfaces IBI Add List of interfaces 10 10 Interface I 2 Interface I 2 Interface 2 3 Interface 3 4 Deterface 4	B) Modily	Persove	Point # 54 # <b>Current a</b> ×[n] -15.00 -0.80 -0.80 0.00	2 (m) -2.00 -2.00 -2.00 0.00 0.00	Cancel Cancel Parts Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual		1.1.1.1 1.1.1.1	<u>(777)</u> (777)	
Banges Interfaces El Add     List of interfaces     Deface     Deface	(E) Modfy	Perseve	Point = 54 al Carrent i ×[n] -45.00 -0.80 -0.80 -0.80 -0.80 54.00	2 [m] -2.00 -2.00 -2.00 -2.00 0.00 0.00 0.00	I Grof Part I Mart Mart Mart		- (		
Ranges Interfaces IB Add List of interfaces I Interface I Interface I 2 Storface 2 3 Interface 3 4 Storface 4 9 Parface 5 6 Storface 6	E Modiy	Reneve	Point # 54 4 Current # ×[n] -45.00 -0.80 -0.80 0.00 54.00	E E or 00 nterface points 2(%) -2.00 0.00 0.00 0.00	Narci Narci Massi Massi Massi Massi Massi		1-1-1-1		

Slip surfac	ei oroler 🔹 🖬 sub	athute 🗏 Rena	we				
	Circular slip surface					Analysis	
Center		() Modly	Methodic	Bishap	٠	Surper scattery vertex actin (control) Surper active forces : P ₂ = 235.25 Hillys	1
χ =	0.00 [n]		Analyzia type :	Optimization	•	Sum of panatys forces : Pp = 9615.93 Wiles	
Z #	0.00 [n] Angles :		Restrictions	is not input		Resulting represent: My = 1002.00 mm/gm Resulting represent: My = 70725.45 Minu/m	
Radius I	0j =	-76.62 [9]	F Assume and	, thois as infinite		Factor of selects = 40.88 > 8.50	
R=	= gs [n] 00.8	90.00 [9]	E Lake	1000 CAR		Slope stability ALICEPTABLE	

Hình 3.17. Tính toán ổn định tổng thể của hệ kết cấu

*) Giai đoạn thi công thứ hai : tiến thành thi công hệ thống văng chống ở cốt - 2,300m

Các thông số về các lớp đất là không đổi, do vậy ta không cần khai báo lại các thông số trong trình duyệt Assign. Trong giai đoạn thi công thứ hai, ta tiến hành thi công hệ văng chống thép chữ l.

Bước 14: Ấn vào nút 🛨 trong cửa sổ Stage Construction, để chuyển sang giai đoạn thi công thứ 2.

Bước 15: Trình đơn khai báo thanh chống, Props.

- Click chuột vào nút Add trong cửa sổ Props, hộp thoại New Props xuất hiện.
- Khai báo các thông số về thanh chống trong hộp thoại:
  - + Prop Depth: vị trí của thanh chống: tại cốt -2,300m; độ sâu là 1,10m
  - + Length : Chiều dài thanh chống: L=7,1m (bằng ½ chiều rộng hố đào)
  - + Spacing of props : Khoảng cách thanh chống: 3m

+ Stiffness : độ cứng của thanh bao gồm mô đun đàn hồi và diện tích tiết diện. Ta sử dụng thanh chống chữ I40. Môđun đàn hồi và diện tích tiết diện như trong hình.



Geometry			
Prop depth :	z = 1.	10	[m]
Length :	l = [	7.10	[m]
5pacing of props :	b = 🗌	3.00	[m]
5tiffness			2
Modulus of elasticity :	E =	210000.00	[MPa]
Area :	A =	8.192E+03	[mm ² ]

#### Hình 3.18. Khai báo thanh chống cho công trình

Các thông số còn lại của bài toán như hoạt tải trên mặt đất, thông số về nước ngầm, mô hình đất trên mặt đất... không thay đổi trong quá trình thi công. Với chương trình Sheeting check nói riêng và bộ phần mềm Geo5 nói chung, khi chuyển sang giai đoạn thi công thứ tiếp theo, tất cả các thông số trong giai đoạn này sẽ được mặc định là giống trong giai đoạn trước. Vì vậy, ta chỉ cần khai báo lại những thông số có sự thay đổi trong các giai đoạn thi công.

Bước 16: Tiến hành phân tích tường trong giai đoạn thứ hai.

- Tiến hành tương tự bước 12 và bước 13. Kết quả phân tích tường như sau:







Hình 3.19. Kết quả phân tích tường trong giai đoạn thứ 2

Bước 17: Chuyển sang giai đoạn thi công thứ 3.

Trong giai đoạn này, chúng ta tiếp tục tiến hành đào đất tới cốt -6,15m; độ sâu đào đất tương ứng là 4,95m.

- Click vào nút 🛨 trong cửa sổ Stage Construction để chuyển sang giai đoạn thi công thứ 3.

Bước 18: Trình đơn Excavation

- Tại cửa sổ Depth of ditch chọn h = 4,95m

Các thông số còn lại của bài toán là không đổi, ta tiến hành phân tích tường trong giai đoạn thứ 3 (cũng là giai đoạn cuối cùng trong bài toán này).

#### Bước 19: Tiến hành phân tích tường

- Thực hiện tương tự các bước 12, 13. Kết quả phân tích tường như sau:







Construction stage : 🛞 😑 [1]			
-78,08 -60,80 -68,08	-40.80	-30,80 -20,05 -08,06-	ROR 00,00 20,00 30,00 40,00 80,00 50,00 70,00
' Analysis ( 🗷 🗃 [1]			
Shp surface : decular 🌱	🗑 Substitute 🗏 Rem	9748	
Center :	urface ®_tlodfγ	Nethod : Bahap 2 Analysis type : Ceptinization 2	Analysis Songe statoaty vermication (Bistrip) Sun of adves forme : Pa = 1281.30 Hg/m Sun of poster forces : Pa = 7494.89 Hg/m Sun of poster forces : Fp = 7494.89 Hg/m Sun of poster : Ma = 31519.49 Hg/m

Hình 3.20. Kết quả phân tích tường trong giai đoạn thứ 3 Bước 20: Xây dựng các biểu đồ bao:

- Trên thanh công cụ Stage of construction:  $2 \times [1]$  [2] [3], chuyển về giai đoạn thi công thứ nhất. Khi đó trình đơn Envelopes xuất hiện.

- Trong thanh công cụ Construct : envelopes from all the stages ( tạo biểu đồ bao cho tất cả các giai đoạn thi công)



Hình 3.21. Biểu đồ bao mômen, lực cắt và chuyển vị của tường

Bước 21: Xuất ra thuyết minh, kết quả, biểu đồ nội lực:

*) In các biểu đồ nội lực:

- Để cửa sổ hình biểu đồ cần in.
- File/ Print Picture.
- Cửa số Print and Export Picture xuất hiện.
- Mục Document cho ta nhiều lựa chọn:
  - + Chỉnh sửa khổ giấy
  - + In trực tiếp trên máy
  - + Hoặc Save as dưới dạng file pdf.

+ Lựa chọn Open and Edit cho ta sửa chữa nội dung hình ảnh in ra dưới dạng file Word.

nie Edit In	put Analysi	a Pictures Options Help		
Neve	Orl+N	2* 65 (#)		
Copen	Chi+0	÷ 🕺 (1) [2] [3]		
Seve as		metry of structure	Bending masterit	Shear force
Respen	1.00	of structure = 18.00m	Max. M = 341.78khm/m	Mas. Q = 139.10kA(m
Polders			17.71	14.02 4 139.78139 79
linport.			HHAPPARE	20000000000000000000000000000000000000
Esport			-341.78	10 001020
Print picture	10	147		and the second se
tot	Ab+P4	111		-57.19 - PL - 57
	1000	6/7		199.93
		s 1 1	and the second sec	-76.13
		5/17	75.28	2002000
			and the second se	and the second sec
4+++	* + + +	+++++++++++++++++++++++++++++++++++++++	400.00 + + + + + + + + + + + + + + + + +	1.00 tishab + + + + + + + + + + + + + + + + + + +
		[m]	0m	inim] (Jdijin
al Mark		Deferral former		
Rends				
Analysis	roperty come	slebed.		A
Manimus	in values of	listenal faces acting on the structure		-
Maximum Maximum Maximum	shear force moment deplacement	= 130.10 M/m = 341.78 Mm/m t = 8.9 mm		
Reaction	is in props	anth December 1		
No.	00	n] [M]		
1	-	1.10 459.34		

Hình 3.22. In biểu đồ

*) In thuyết minh tính toán:

- File/ Print Document ....
- Cửa số Print and Export Document xuất hiện.
- Lựa chọn các mục để in ra trong thuyết minh.

Chú ý: nếu trong quá trình tính toán, ta bỏ qua bước nào thì trong thuyết minh được Geo5 in ra sẽ không có phần đó. Ví dụ: ta bỏ qua không xét ổn định tổng thể của hệ kết cấu, không xây dựng biểu đồ bao thì trong thuyết minh sẽ không có những thông số của biểu đồ bao và kiểm tra ổn định tổng thể.

- Khi xây dựng biểu đồ bao, trong thuyết minh sẽ xuất hiện bảng giá trị mômen, lực cắt. Ta có thể sử dụng các giá trị này để tính toán cốt thép cho

tường.		
Ho 55 Jaou Andres Roburs Options Help ☐ Henr OriHin :: ::::::::::::::::::::::::::::::::		
Sore as         Deplorment           Respen         Mart = -0.3; Mar2 = -8.0mm           Folders         5.425           Leport         5.425	Bending moment Min1 = 17.14, Min2 = -341.78Mm/m Mis1 = 75.28; Mas2 = -59.76Mm/m 42.71 \$48.95	Sinse force Mint = 10.02, Min2 = -76.138/(/m Mis1 = 139.02, Min2 = -37.838/(m -34.02, 14.02, 14.02 -20.05, 20.09 10.050, 03
Print document. Print picture Euit Aik+P4		57.14 -76.13, 37.70 299, 27.70
t tronslages : ∰ģdd	925 G7500 0 97 [mm] [kk	520 1250.00 0 250.00 https://www.internationalized.com/second/actionalized.com/second/actionalized.com/second/actionalized.com/second
Evelopes were constructed. Construct: envelopes from all stages Stage selector (1) D1 D1 D1	Reads Madnum values Madnum diplacement = -0.9 mm Mininum diplacement = -0.3 mm Mininum diplacement = -0.1,78 Minish Mininum bending moment = -041,78 Minish Madnum alwar force = 130,10 Minish	5
		*

Hình 3.23. In thuyết minh tính toán